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Analytical Evaluation of the Asymptotic Impedance
Matrix of Asymmetric Gap Discontinuities

Seong-Ook ParkMember, IEEE,and Constantine A. Balaniellow, IEEE

Abstract—New analytical formulas have been developed for
evaluating the asymptotic impedance matrix of an asymmetric
gap by using the integral transform method. Application of the
newly derived formulas shows a dramatic improvement of the
computation time for evaluating the overall impedance-matrix
elements for the symmetric and asymmetric gaps while retaining

the accuracy. db
Index Terms— Discontinuities, integral equation, spectral- 1
domain method. Fig. 1. Geometry of asymmetric gap discontinuities.
|. INTRODUCTION transverse and longitudinal current components, was reported

SYMMETRIC gap discomines on a grounded 6% 2ekeen (1) a0 Atbeoues ) newever or ceert
electric slab have numerous applications in monolithi¢ y PS, P

microwave integrated circuits (MMIC’s), such as in filter eglected to simplify the solution of the full-wave equation;

and impedance transformers, and interface well with acti\)ggse’moar:léz Lc;r;gr:tgglnn?,ln(;ut;'rfntaco$ﬁgg(|?ctt:'sc(;% Tj'ge;et% ];?];
devices. Accurate analysis of asymmetric gap discontinuitig]s i g ! i ){h I ftl gd P ht stri ' Ib u q
is a more computationally time-intensive problem than thg/frent densities on the left and right strips can be expresse

of symmetric gaps because if the width of the two electricA’ [3]
narrow strip lines is mismatched, the integrand of each inter- 1 o poo
action matrix of an asymmetric gap is more highly oscillatorg,.(z, y) = —2/ / Goz(ks, ky)
compared to those of a symmetric gap. A% J o0 J oo

In order to speed up the execution time, this paper presents  -[J2*% (k,, k,) + J5e (k, k)] - e FemRv) g dl,
an analytical technique for solving the asymptotic part of the (1)
impedance matrix of general asymmetric gap problems. If two
strips have an equal width, a symmetric gap is a special ¢
of an asymmetric one. To verify the efficiency and accuracy q
the proposed method, the newly derived formulas were appli
to two cases: a symmetric and an asymmetric gap.

ereG,., is thei component of the dyadic Green'’s function
e to ani-directed infinitesimal dipole, and!- and JRish
resent the spectral-domain current densities on the left and
right strips, respectively.
The current density on the left line is modeled as a standing
Il. THEORY wave (sum of incident and reflection wave) with expansion
The asymmetric gap in open microstrip structures is subjdefctions of the form
to radiation at discontinuities in the form of either space or
surface waves. A full-wave solution is needed to take into !
account such phenomena. An asymmetric gap discontinuity]“%e&(x’y) =L (z,) + L@ v) + Z Lo S (2, 9)

M

on a grounded dielectric substrate is depicted in Fig. 1. Full- m=t @)
wave analysis of gap discontinuities, by considering both the i
R e Ie @
TR, y) = e 3)
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On the right strip line, the current density is represented as 1- bx-x 1 /L, L
a traveling wave with expansion functions of the form sin( &, x) %T sin (key x)
r /
T 2, y) = TFNw,y) + ) Ly dap(2,) ®) /><><\
p=1 \\\ L S
g gy =TT < W e N
1— (2y/Ws)? 2 cO8(ky, X) ]é G% cos(kes x )

(6)
Fig. 2. Current expansions on the asymmetric gap.
wherek,, is the effective propagation constant of an infinite

strip line with widthW,, andT’ is the transmission coefficient = . . .
to be determined. weighting functions on the left signal line and® + 1)

gangular weighting functions on the right signal line [3]. This

Each current density of the standing- and traveling- -way i .
modes can be decomposed into semi-infinite sine and cosﬁ%%%%z_leads to the following matrix system with-1>+2

wave terms. The semi-infinite cosine expansion mode sta
at a quarter-wavelength away from the gap discontinuity to [Z.]
satisfy the boundary condition at the end of the line. Dom[f[ Zown) Zme+ 3 Zms| [Zmqg] [Zumic +jths]} —-R
this, the current densities on each strip line can be expressed 88,,,]  [Z,. + 7 Zps]  [Zpgl [ Zptc + 5 Zpes] | | gl
T

inc ref __ _ . I I
]ac +]ac _|:(1 R) f81 (kelx—i_ 2) 1(1+R) _ [_an_i_Jan]
“\1-z.+iz, |- 2
Suthen)] [VIS@ITE pe i
Each submatrix in (12) represents a set of mutual interac-

Jren = [—T-fs2 (ke2 [z —G]+ g) —JT tions between the test and basis functions. Their respective
mathematical representations and asymptotic forms of each

< fag (Key [w—G])}/\/l — (2y/W3)?  (8) submatrix are presented in [5, Appendix B]. Since the in-

tegrand of the double infinite integration in each submatrix

where element converges slowly with a highly oscillatory behavior,
sin (v) if —Ma<u<0 numerical integration is extremely laborious. Thus, the analyt-
fs(w) = { 0 if otherwise 9 ical procedures of the asymptotic part of impedance matrix, if

applicable, can considerably reduce the computational effort

Fon(u) = { sin(u),  if Mr>u>0 (10) involving Sommerfeld-type integrals.

0, if otherwise.

The current density components of the standing and traveling 1
waves have ideally semi-infinite ranges. However, for conve-
nience of numerical evaluations, these sinusoidal-type currents
are truncated after several integer numbers of half-wavelength '€ @symptotic part of submatricés,.,, and Z,, can be
Typically, the convergence of the solution is achievedvif ransformed into a finite one-dimensional mtegral by using
in (9) and (10) is greater than six [3], [4]. In this paper, wihe same procedures described in [6]. Their results also have

. ANALYTICAL METHODS OF THE
ASYMPTOTIC IMPEDANCE MATRIX

use M = 8. similar formulas as in [6, egs. (18) and (19)]. The asymptotic
Expansion functions/,,,, and J,, in (2) and (5) use the part of submatricesZ,,,, and Z,, have the following two
following triangular form: general forms represented by

_ |z — 2, a 1% cos (dyky) sin? (kpLy/2)
A<x x“) N { -7 lemml<hi gy Ime= o Jo[E2 42 k2
L; 0, otherwise - b

wherew andi havem and one for the left signal line, and sin® (kwL2/2) <k _>J0 <k WQ)dk dk,
and two for the right signal line. k2

The current expansions for an asymmetric gap are shown (13)
in Fig. 2. Electric-field boundary condition (i.e., the tota / / cos (dsk,) k L/2)
directed electric field due to the entire current on the conductor "’7 \/m !
strip is equal to zero) is employed on the conductor strip. The
electric-field integral equation can be converted into a matrix sin? (kLo /2) Jo( k, Wl a1, 2 W2 i db,.
system by multiplying by a testing function and integrating the ) k2 -0 9 )70
inner product over the support of this function. Since there are (14)
(M + P + 2) unknown coefficients, one additional weighting
function on each side of the signal line is needed. Therefof@ther remaining submatrices, such &s,., Z..s, ZpcZps,
starting from the gap discontinuity, we ha{@ +1) triangular  Z,.ic, Zmis, Zpte, aNd Z,is involve the following two general
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asymptotic forms represented by:
o _ /'°° /'°° cos (dyk,) sin? (k,L; /2)
mcs o o

/1. 2 kZ(k2 — k2
k%+k5 ac(ac el)

W, W,

- Jo <ky7> Jo <ky 5+ | dha dky (15)
oo /°° /°° cos (dk,) sin? (k,L; /2)
mcs o 0 /kg% + k_g k% — ]%'gl
Wi W,
- Jo <ky?> Jo <ky71> dk, dk, (16)
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integrals of (13) and (14) are transformed into finite one-
dimensional integrals of

1 Li+L>

mw=—/ B(x—d) A)dx  (24)
T J—Li—Ls
1 L1+Lo

mwz—/ B(x—d)-B()dy.  (25)
™ Li—Lo

The validity of the above two formulas is directly verified by
letting W, = Wy = W andL; = L, = L. By doing this, (24)
and (25) reduce to [6, egs. (18) and (19)].

The second integrals in (19) and (20) with respedt.taan
also be analytically solved, as shown in (26) and (27), at the

where¢ and !/ have one for the left signal line, and two forbottom of the next page, where the derivations of (26) and

the right signal line.

(27) are illustrated in Appendix B.

With the aid of [6, eq. (11)], the integrals of (13)~(16) can gpgtityting (21), (26), and (27) into (19) and (20), the infi-

be rewritten as (17)—(20), shown at the bottom of this pal
Analytical integration of (17)—(20) with respectkg is defined
as follows:

Bx—d) = [

0

o5k ) o gy ) Kol ] iy

(21)

where the analytical solution oB(x — d,) is derived in
Appendix A.

Yfite double integrals of (15) and (16) can each be transformed

into an infinite one-dimensional integral of

ziiju—@ycumx

s
1
™

a
IIH cs

(28)

b
Im(‘,s -

—[%B@—%%D&Wx (29)

If the argument|x — ds| in (21) is greater than[10 -

It can be easily shown that the analytical result of (21) cdpax (W1, W2)], B(x — d,) in (21) rapidly approaches the

be reduced to [6, eq. (14)] by letting’; = W; = W. Using

straightforward algebra, the second integrals in (17) and (18)

with respect tok, can be represented by

i in? (kpLy/2) sin? (kp Ly /2
/ Cos(kwx)sm (kxL1/2) sin® (kyLa/2)
0

k2 k3
< frx—x x
A Al —
/—oo < Ly ) <L2>daj

oo ) sin? (kylo/2
/0 cos (kzx) sin? (kal/Q)%
Ll T 1 T — LQ
— A=) - ZA
[ <L1> 2 < Ly

=T
8
where A is defined in (11).

dk,

A(x)

LiL,
16

=7

(22)

)

(23)

B(x) dky

<.’L’+L2

-4
2

asymptotic behavior represented by

s 1

lim B(y—d,)~— 30
|x—ds |00 (x ) 2 |x —ds| (30)

where
}:linl P_(I/Q)(a:) =1. (31)

With the aid of (30), the infinite one-dimensional integrals

of (28) and (29) can be further simplified to finite integrals of

1 A7 s
a R — B(x — . —
Imcs T /AL (X dS) C(X) dX 4k_gl H (32)
J AUB( —d,) - D(x)dx — —H (33)
mecs ™ 7 Jar X s X)ax 4kel

From the above formulas, the values of the integrals imhere is given in Appendix B, andi" and A" are given
(22) and (23) are zero fop¢| > (L1 + L2). Therefore, by by max|[L;,|d;| + 10 - max (W1, W>)] and min [ L;, |d;| —
substituting (21)—(23) into (17) and (18), the infinite doubl&0 - max (W;, W;)], respectively.

" 1 o> o> Wl W2

=2 [ [ st - aan(k 5 ) a5
1 oo oo Wl W2

Ing = - /_OO Ko(kylx — ds|)Jo ky? Jo <ky7>

1 /= Wi Wi
S e = — Kolk,|x — Y ——
mcs T /_oo O(ky|X d5|)J0 2 JO <ky 2 )

1 oo oo m Wl
Il;lCS = ; /_oo o KO(ky|X - d5|)‘]0 ky 2 JO <I€y7>

oo sin? (kp Ly /2) sin® (k,L2/2)
dk, x /0 cos (kyx) 2 72 dkm} dx
17)
oo =279,
dks, x / cos (kupx) sin? (kpLy /2) M;€+L2/2) dkx} dx
0 T
(18)
> cos (kpx) sin? (k. L;/2)
dk, x /0 12 2 dk, ¢ dx (19)
 cos (keX) . o
dky X A W S (Imez/2) dkm} dX (20)
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. Double Integral (15) s —— Conventional [4]
Present Method (32) R Present Theory
) 0.025

c,
‘I—{ }—F : Experiments [8]
c, c,

Absolute Values
o
2

Capacitance (pF)
2
o

e
=)
=

e 0.005

107
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dg 0.0
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@) Gap spacing (mm)
Fig. 4. Capacitance values of a symmetric gap with = 8.875,

S 5 -
\ A . Double Integral (16) Wy =Wy = d = 0.508 mm.

—— Present Method (33)

"f A computation time to obtain the results of Fig. 3, using the
newly derived formulas of (32) and (33), is approximately
J 3000 times faster than those of the two-dimensional method.
The numerical evaluations of each interaction involving
s the truncated sinusoidal basis function have the most time-
) consuming part compared to the other remaining matrix ele-
) ments. Thus, the direct spectral-domain analysis (SDA) with-
T out acceleration technique has a serious limitation for this part.
However, the proposed analytical technique of the tail integral
000 1007 200300400 500 600 T00 800900 1000 eonsiderably reduces the computation time, especially for this

part.

Absolute Values

(b)

Fig. 3. The values of (aJ%.. and (b)I?, . for W, = 1 mm, Wy = 2
o Li = 1 . andkSJ: e rad(,n)]m. : ! ? IV. NUMERICAL RESULTS OF SYMMETRIC
AND ASYMMETRIC GAPS

In order to check the validity of the two formulas in (32) and The symmetric gap discontinuity (at low frequencies) can
(33), the double integralg?, .. and It ., which were defined be modeled by the equivalent circuit such as the capacitive
in (15) and (16), respectively, are calculated with upper limit network. Equivalent shunt and series capacitargsind
B* = 300 rad/mm forWy = 1 mm, Wy =2mm,L; =1 mm, C, can be extracted from the reflection coefficiéhtand the
and values ofd, from 0 < d; < 10. The value ofk., was transmission coefficiert’ [4], [7].
choser2s rad/mm to eliminate the singularity in (15) and (16). The newly derived formulas are applied to the efficient
With these parameters, the one-dimensional intediflsand evaluation of the matrix elements in (12). Fig. 4 shows the
I’ . in (32) and (33) are evaluated with an accuracy of fowquivalent capacitance values for a symmetric gap disconti-
significant figures. These results are plotted in Fig. 3, whichuity with ¢, = 8.875, W; = W, = d = 0.508 mm, and
indicate excellent agreement. In this example, the averafjie=- 5 GHz as a function of gap spacing. For comparisons, the

[ cos(kyx) sin® (kyL;/2)
=)

1 . .
— s L~ cos (ke L)l -sin(Ix|ke, ), f x| > Li
“ (26)

- 1 .
— e L = xlke, + sin (k) = cos (ke [xsin (ke L)), 1F [x] < s
< cos (kpx) .
P00 = [ g s L/

gL cos (ke Ll -sin(hexD),— if x| > Ls
3 (27)

T . .
oy [sin (K., |x|) — sin (k., L;) - cos (ke,x)]; if |x| < L;
€y
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Fig. 5. Comparison of thé; of a symmetricgap (¢, = 9.9,d = 0.635 Fig. 6. Comparison of thé€s; of a symmetricgap (¢, = 9.9, d = 0.635
mm, W7, = Wy = 0.635 mm, G = 0.508 mm). (a) Magnitude ofS1;. mm, W; = W, = 0.635 mm, G = 0.508 mm). (a) Magnitude o0fS2;.
(b) Phase ofS;. (b) Phase ofSs;.

results obtained by the conventional SDA using the piecewiassumed analytical representation of the current distribution
sinusoidal basis functions [4] and those of measurememisng the transverse direction does not affect the results, if the
[8] are included in Fig. 4. The conventional SDA in [4]value ofk., is calculated accurately.
neglects the transverse current component and an upper limiThe end location of eacti/ +1)th and(P+ 1)th triangular
B* = 400 - kg was used for the evaluation of the eachveighting function does not affect the accuracy of the results
submatrix in (12). However, the proposed method, using #rthe expansion functions cover at least a quarter-wavelength
upper limit of 3* = 50- k&, is found to be sufficiently accurate.from the gap discontinuity. This indicates that the higher order
The convergence of the results is achieved by increasing thedes generated at the vicinity of discontinuities have highly
number of the basis functions 18 = P = 21. Our results are evanescent behavior. Thus, the center of gddh+ 1)th and
in excellent agreement with the data obtained in [4] and se€R+1)th triangular testing function straddles the starting point
to be in reasonably good agreement with the experimentdlthe cosine currents (see Fig. 2).
results of [8]. The authors of [8] conducted two experiments For comparison of the overall computational efficiency, the
and reported for each spacing two sets of data, which wereerage computation times between the two methods, used
slightly different from each other; both sets ©f are shown to obtain the predicted results of Fig. 4 were calculated. To
in Fig. 4. obtain the results of Fig. 4, the overall computation time
The effective propagation constaht, corresponds to the of the proposed method is 17 times faster than that of the
mode that actually propagates in the transmission line witlonventional method in [4].
a known analytical variation of the assumed current densityNext, the scattering parameters in symmetric and asymmet-
along the transverse direction. Usually, the valuéfcan be ric gaps were examined. Because there is a lack of data for
precisely evaluated by using the numerical methods introducaslymmetric gaps, a symmetric gap was chosen for the initial
in [1] and [3]. In these resultsk.,, was obtained with the comparison to validate the formulation and the computed
accuracy up to a fifth significant digit. It is also found that theesults. Once the solution is validated for a symmetric gap,
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Next, the scattering parameters of an asymmetric gap for
6 = 6.15, d = 1.27 mm, W1 = 0.5 mm, Wy = 0.75 mm,
and G = 0.5 mm were examined. In this case, the values
of S;; are not equal to those aof,, due to the physical
asymmetry with respect to the width of the two strips. The
0.6 P ojomm corresponding values &, S»;, andS,, are plotted in Fig. 7
= ,//‘-," as a function of frequency. No computed or measured results

7

04 W%ﬂ "‘5“““8 s for the asymmetric gap discontinuities could be found in the

T - literature for comparison. However, based on the successful
=T results of the symmetric gap, it can be safely assumed that the

02 T 18,01 obtained results are reasonable and valid.

0.8

/
18501

IS]

00 8 10 12 14 16 18 20 V. CONCLUSIONS

Frequency(GHz) An efficient full-wave analysis of symmetric and asymmet-
(a) ric gaps is developed by using the analytical solutions for
the asymptotic matrix elements. A motivation for performing
e such a procedure is to reduce the required computation time to
— evaluate the impedance-matrix elements. Analytical techniques
T have been successfully used to improve the computational
efficiency while retaining the accuracy for the evaluation of
Sy the asymptotic matrix elements. This has been successfully
demonstrated in the analysis of symmetric and asymmetric

gaps.

o S I ©
= =) =3 S
i
/
/
/

Phase of S (Degree)
<

e APPENDIX A
e In this appendix, we are concerned with the analytical
solution of the following type of integral in (21):

[V
=]
{

A
IS
|
!
/

6 8 10 12 14 16 18 20

Frequency(GHz) Ble) = / Jolaky)Jo(bk,) Ko(ck,) dk,  (34)
0
(b) . . , .
. ) _ where Jy is the zeroth-order Bessel function of the first kind,
Fig. 7. S parameters of an asymmetigap (¢, = 6.15, d = 1.27 mm, - g . . .
W, = 0.5 mm, W, = 0.75 mm, andG = 0.5 mm). (a) Magnitudes of1,, and Ko is the modified Bessel function of the first kind.
Sa1, and Szs. (b) Phases of11, S21, and Saa. With the aid of [9, formula 13.4.5.(6), p. 333], (34) can be
expressed as a product of two hypergeometric series as

one may assume that the formulation for asymmetric gaps is B(c) = / Jo(aky)Jo(bky)Ko(cky) dk,
also correct. 7r01 11 11

The symmetric gap on a grounded dielectric slab investi- = §EF<§’ 2 1;77)F<§, 5;1;§) (35)
gated has a width¥; = W, = 0.635 mm and gapG =
0.508 mm with a relative permittivitye,, = 9.9 and a substrate where
thicknessd = 0.635 mm. The magnitude and phase%f, and

S21, computed by using the proposed method, are compared  ,; — ¢ —a? 4+ - /(& _ a? + ) + 4a’c? (36)
with those of the full-wave solution [2] and are plotted in . 2c
Figs. 5 and 6. Clearly, satisfactory agreement with the results _cta— b — /(& 4 a? = 1%)? 4 4b*c? 37)
of [2] has been achieved. Since the proposed results are quite 2¢2

similar to the full-wave data, which take into account botQyhich is valid for any arbitrary positive values af b, andc.

& and 2 current components, it is believed that for the gap after careful examination of (36) and (37), it is easily found
discontinuities, the assumption of using only the longitudinghat the values of) and ¢ always have less than zero value,
current component on the narrow microstrip line is reasonabj@. | —oc < 5, ¢ < 0. Thus, the hypergeometric series in (35)
This is due to the fact that there is no mechanism to exci divergent in the regior-oo < 5, ¢ < —1. However, these
strong transverse currents for gap discontinuities. Therefoggyries can be transformed into geometrically convergent series
we assume that this is valid even for asymmetric gaps if thginalytical region) by using the Gauss relation [10, formula
respective strip widths remain electrically narrow. Howeveg, 131, p. 1043] as

step—junction discontinuities (because of their current flow in

the vicinity of the junctions) require the transverse current F<1 1.1.35) _ 1 F<1 1.1. L) (38)
component in order to achieve sufficiently accurate results [2]. 2’27 T—z \2°2"72-1
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Using (38), the regions-co < 7, ¢ < 0 of the hypergeometric be written as

series in (35) can be converted to analytical regidrs;/(n— 0o

1), ¢/(¢—1) < 1. Also, from the relations of [6, egs. (28) and J2(kya)Ko(kyc) dk,
(30)], the hypergeometric series functiétfl/2, 1/2;1;x) can ~0

be represented by an elliptical function as .

T 2¢

20\ :
P_(l/g) 1+ <?> (43)

] o ) ] ) where P_, /2y is the spherical Legendre function of the first
where K is the complete elliptical function of the first kind. g

With the aid of (39) and (38),F/(1/2,1/2;1;n) and  yging [6, eq. (30)], (43) may be expressed as a product of

11 2 .
F<§7§717$> = ;K(-’E), ifo<z<l (39)

F(1/2,1/2;1;() can be represented by the following two elliptical functions:
11 E—a? 40— /(2 —a?+12)? + 4a?c? o0
F<§, 21l 22 /0 J3(kya)Ko(kyc) dk,
B V2e _4 1 K Ve2+4a? — ¢ (44)
\/62+a2—b2+\/(62—a2+b2)2+4a262 7 ¢+ V2 +4a? Ve +4a2+c¢)
y 2 K It can be easily shown that (42) reduces to (44) by letting
T a = b. Thus, formula (44) can be regarded as a special case
< 2 —a?4+p2 — \/(62 —a? +0%)2 +4a2c2 ) of (42) if a = 0.
2 52 2 _ 2 _ 42 232 2.2
2 — a2+ b2 — \/(c? —a? +1?)? + da’c » APPENDIX B
) s 1o 5 S — _— (40) The integral’(x) in (26) over thet, plane can be converted
gl e b — V(e +a? —12)? +4db%c into an integration over the: plane by using Parseval's
227 2¢? theorem
_ V2e e6) /°° cos (k) sin® (ke Li/2)
B X) = E
\/02—a2+b2+\/(02—1—@2—1)2)2—1—41)202 o kZ—#k2 k3
‘ <E)K = [ Bl Falh) dk
™ 0
4 a? — b — /(2 +a? —b?)2 + 422 =7r/ fi(x) - f2(x) da. (45)
2 a2 — P2 — \/(62 T a2 — 22 + 432 ) -

(41) Let us defineF (k) = cos (kyx)/(k3 — kZ2) and Fa(k,) =
sin? (k,L;/2)/k2. With the aid of [10, formula 3.742.8}, (z)
These formulas make it possible to evaluate (35) by geome&n be solved as

rically convergent series. Substituting (40) and (41) into (35), 1 e
the closed-form solution of (34) can be obtained as follows:f, (x) = 2—/ Fi (k)" di,
T J—oo
B(c) = / Jo(aky)Jo(bky) Ko(ck, ) dk, [T et )
0 2 J_ o k2 — kgl
_4 ¢
N TR e o “g, k) enelhe), > lel>0
x 1 = _4k€1 sin (2|X|kez)7 |X| = |$| >0
2 _ 42 2 2 2 _ h2)2 2 -2 .
ye-a it @ wy . o cos (ke )sin k). el > [x]> 0.
2 _ 2 2 _ 2 _ 2 232 2.2 et
e a? + % — /(2 — a? + 1%)? + da?c (46)
224 b2 — \/(02 — a2 +b2)2 +4a2c2

easily written as

K A 4a? -6 — \/(02—1—@2 —b2)2 4+ 4b2¢?
—62 + CL2 _ b2 _ \/(62 + CL2 _ b2)2 + 4b262
oo 2
(42) _ 1 sin® (kg L;/2) ) o L (=
f2(2) v A= cos (kyx) dk, 7 A I
In order to check the validity of (42), we first consider the (47)
analytical solution of the integral (34) far = . With the aid
of [10, formula 6.513.2], the integral of (34) far = b can where A is defined in (11).

) Using straightforward algebraic manipulation${x) can be



PARK AND BALANIS: ANALYTICAL EVALUATION OF ASYMPTOTIC IMPEDANCE MATRIX 1139

TN = cos (ke Llsin (Il if x| > Li
— [ (48)
___[kezLi - |X|kez + Sin(|X|kez) — COS (kez |X|) sin (kezLi)]’ if |X| < Li

 cos (kzx) .
D(X):/O ﬁsm?(/ﬂwmp)dk
x €]

:_4/7;,1 {sin(kellxl) - %Sin (ke (Ix] + L)l = %sm e, (|I| = Lil)]}

v . .
Ty [1 — cos (ke, L;)] sin (ke |x]), if [x] > Li 50)
= T . .
—m[sm (Ke,|x]) — sin (ke, L) - cos (ke, X, if [x|<L;

e

Substituting (46) and (47) into (45¢,(x) can be evaluated the infinite integral” in (51) can be simplified to the finite
exactly in closed-form in terms of sine and cosine terms agegral as
shown in (48), at the top of this page. Using [10, formula

3.727.9] H = - cos (keyd,) — cos (e, d)
|4 s gin (k AT =ds i (k
oo COS(XI{JJ;) - ) . [/ ( ﬁzX) dX+/ ( FIX) dX
L2 _ |2 dky = ok sin (ke |x|) (49) 0 X 0 X
0 z ey e |AT|+d
. “ cos (ke,X)
] _ ] + sin (k.,ds) — =7 dx. (53)
the integralD(x) in (27) can be expressed as shown in (50), AV _d, X
at the top of this page, arif in (32) and (33) is defined as
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