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Analytical Evaluation of the Asymptotic Impedance
Matrix of Asymmetric Gap Discontinuities

Seong-Ook Park,Member, IEEE,and Constantine A. Balanis,Fellow, IEEE

Abstract—New analytical formulas have been developed for
evaluating the asymptotic impedance matrix of an asymmetric
gap by using the integral transform method. Application of the
newly derived formulas shows a dramatic improvement of the
computation time for evaluating the overall impedance-matrix
elements for the symmetric and asymmetric gaps while retaining
the accuracy.

Index Terms— Discontinuities, integral equation, spectral-
domain method.

I. INTRODUCTION

A SYMMETRIC gap discontinuities on a grounded di-
electric slab have numerous applications in monolithic

microwave integrated circuits (MMIC’s), such as in filters
and impedance transformers, and interface well with active
devices. Accurate analysis of asymmetric gap discontinuities
is a more computationally time-intensive problem than that
of symmetric gaps because if the width of the two electrical
narrow strip lines is mismatched, the integrand of each inter-
action matrix of an asymmetric gap is more highly oscillatory
compared to those of a symmetric gap.

In order to speed up the execution time, this paper presents
an analytical technique for solving the asymptotic part of the
impedance matrix of general asymmetric gap problems. If two
strips have an equal width, a symmetric gap is a special case
of an asymmetric one. To verify the efficiency and accuracy of
the proposed method, the newly derived formulas were applied
to two cases: a symmetric and an asymmetric gap.

II. THEORY

The asymmetric gap in open microstrip structures is subject
to radiation at discontinuities in the form of either space or
surface waves. A full-wave solution is needed to take into
account such phenomena. An asymmetric gap discontinuity
on a grounded dielectric substrate is depicted in Fig. 1. Full-
wave analysis of gap discontinuities, by considering both the
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Fig. 1. Geometry of asymmetric gap discontinuities.

transverse and longitudinal current components, was reported
by Jackson [1] and Alex́opoulos [2]. However, for electri-
cally narrow strips, the transverse current component can be
neglected to simplify the solution of the full-wave equation;
thus, only a longitudinal current component is considered for
the analysis of an asymmetric gap. The electric field due to the
current densities on the left and right strips can be expressed
as [3]

(1)

where is the component of the dyadic Green’s function
due to an -directed infinitesimal dipole, and and
represent the spectral-domain current densities on the left and
right strips, respectively.

The current density on the left line is modeled as a standing
wave (sum of incident and reflection wave) with expansion
functions of the form

(2)

(3)

(4)

where is the effective propagation constant of an infinite
strip line with width , and is the reflection coefficient
to be determined.
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On the right strip line, the current density is represented as
a traveling wave with expansion functions of the form

(5)

(6)

where is the effective propagation constant of an infinite
strip line with width , and is the transmission coefficient
to be determined.

Each current density of the standing- and traveling-wave
modes can be decomposed into semi-infinite sine and cosine
wave terms. The semi-infinite cosine expansion mode starts
at a quarter-wavelength away from the gap discontinuity to
satisfy the boundary condition at the end of the line. Doing
this, the current densities on each strip line can be expressed as

(7)

(8)

where

if
if otherwise

(9)

if
if otherwise.

(10)

The current density components of the standing and traveling
waves have ideally semi-infinite ranges. However, for conve-
nience of numerical evaluations, these sinusoidal-type currents
are truncated after several integer numbers of half-wavelength.
Typically, the convergence of the solution is achieved if
in (9) and (10) is greater than six [3], [4]. In this paper, we
use .

Expansion functions and in (2) and (5) use the
following triangular form:

otherwise
(11)

where and have and one for the left signal line, and
and two for the right signal line.

The current expansions for an asymmetric gap are shown
in Fig. 2. Electric-field boundary condition (i.e., the total-
directed electric field due to the entire current on the conductor
strip is equal to zero) is employed on the conductor strip. The
electric-field integral equation can be converted into a matrix
system by multiplying by a testing function and integrating the
inner product over the support of this function. Since there are

unknown coefficients, one additional weighting
function on each side of the signal line is needed. Therefore,
starting from the gap discontinuity, we have triangular

Fig. 2. Current expansions on the asymmetric gap.

weighting functions on the left signal line and
triangular weighting functions on the right signal line [3]. This
procedure leads to the following matrix system with
unknowns:

(12)

Each submatrix in (12) represents a set of mutual interac-
tions between the test and basis functions. Their respective
mathematical representations and asymptotic forms of each
submatrix are presented in [5, Appendix B]. Since the in-
tegrand of the double infinite integration in each submatrix
element converges slowly with a highly oscillatory behavior,
numerical integration is extremely laborious. Thus, the analyt-
ical procedures of the asymptotic part of impedance matrix, if
applicable, can considerably reduce the computational effort
involving Sommerfeld-type integrals.

III. A NALYTICAL METHODS OF THE

ASYMPTOTIC IMPEDANCE MATRIX

The asymptotic part of submatrices and can be
transformed into a finite one-dimensional integral by using
the same procedures described in [6]. Their results also have
similar formulas as in [6, eqs. (18) and (19)]. The asymptotic
part of submatrices and have the following two
general forms represented by

(13)

(14)

Other remaining submatrices, such as , , ,
, , , and involve the following two general
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asymptotic forms represented by:

(15)

(16)

where and have one for the left signal line, and two for
the right signal line.

With the aid of [6, eq. (11)], the integrals of (13)–(16) can
be rewritten as (17)–(20), shown at the bottom of this page.
Analytical integration of (17)–(20) with respect to is defined
as follows:

(21)

where the analytical solution of is derived in
Appendix A.

It can be easily shown that the analytical result of (21) can
be reduced to [6, eq. (14)] by letting . Using
straightforward algebra, the second integrals in (17) and (18)
with respect to can be represented by

(22)

(23)

where is defined in (11).
From the above formulas, the values of the integrals in

(22) and (23) are zero for . Therefore, by
substituting (21)–(23) into (17) and (18), the infinite double

integrals of (13) and (14) are transformed into finite one-
dimensional integrals of

(24)

(25)

The validity of the above two formulas is directly verified by
letting and By doing this, (24)
and (25) reduce to [6, eqs. (18) and (19)].

The second integrals in (19) and (20) with respect tocan
also be analytically solved, as shown in (26) and (27), at the
bottom of the next page, where the derivations of (26) and
(27) are illustrated in Appendix B.

Substituting (21), (26), and (27) into (19) and (20), the infi-
nite double integrals of (15) and (16) can each be transformed
into an infinite one-dimensional integral of

(28)

(29)

If the argument in (21) is greater than
, in (21) rapidly approaches the

asymptotic behavior represented by

(30)

where

(31)

With the aid of (30), the infinite one-dimensional integrals
of (28) and (29) can be further simplified to finite integrals of

(32)

(33)

where is given in Appendix B, and and are given
by and

, respectively.

(17)

(18)

(19)

(20)
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(a)

(b)

Fig. 3. The values of (a)Ia
mcs

and (b)Ib
mcs

for W1 = 1 mm, W2 = 2

mm, Li = 1 mm, andke = 2� rad/mm.

In order to check the validity of the two formulas in (32) and
(33), the double integrals and , which were defined
in (15) and (16), respectively, are calculated with upper limit

rad/mm for mm, mm, mm,
and values of from . The value of was
chosen rad/mm to eliminate the singularity in (15) and (16).
With these parameters, the one-dimensional integralsand

in (32) and (33) are evaluated with an accuracy of four
significant figures. These results are plotted in Fig. 3, which
indicate excellent agreement. In this example, the average

Fig. 4. Capacitance values of a symmetric gap with�r = 8:875,
W1 = W2 = d = 0:508 mm.

computation time to obtain the results of Fig. 3, using the
newly derived formulas of (32) and (33), is approximately
3000 times faster than those of the two-dimensional method.

The numerical evaluations of each interaction involving
the truncated sinusoidal basis function have the most time-
consuming part compared to the other remaining matrix ele-
ments. Thus, the direct spectral-domain analysis (SDA) with-
out acceleration technique has a serious limitation for this part.
However, the proposed analytical technique of the tail integral
considerably reduces the computation time, especially for this
part.

IV. NUMERICAL RESULTS OFSYMMETRIC

AND ASYMMETRIC GAPS

The symmetric gap discontinuity (at low frequencies) can
be modeled by the equivalent circuit such as the capacitive

network. Equivalent shunt and series capacitancesand
can be extracted from the reflection coefficientand the

transmission coefficient [4], [7].
The newly derived formulas are applied to the efficient

evaluation of the matrix elements in (12). Fig. 4 shows the
equivalent capacitance values for a symmetric gap disconti-
nuity with , mm, and

GHz as a function of gap spacing. For comparisons, the

if

if
(26)

if

if
(27)
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(a)

(b)

Fig. 5. Comparison of theS11 of a symmetricgap (�r = 9:9, d = 0:635

mm, W1 = W2 = 0:635 mm, G = 0:508 mm). (a) Magnitude ofS11.
(b) Phase ofS11.

results obtained by the conventional SDA using the piecewise
sinusoidal basis functions [4] and those of measurements
[8] are included in Fig. 4. The conventional SDA in [4]
neglects the transverse current component and an upper limit

was used for the evaluation of the each
submatrix in (12). However, the proposed method, using an
upper limit of , is found to be sufficiently accurate.
The convergence of the results is achieved by increasing the
number of the basis functions to . Our results are
in excellent agreement with the data obtained in [4] and seem
to be in reasonably good agreement with the experimental
results of [8]. The authors of [8] conducted two experiments
and reported for each spacing two sets of data, which were
slightly different from each other; both sets of are shown
in Fig. 4.

The effective propagation constant corresponds to the
mode that actually propagates in the transmission line with
a known analytical variation of the assumed current density
along the transverse direction. Usually, the value ofcan be
precisely evaluated by using the numerical methods introduced
in [1] and [3]. In these results, was obtained with the
accuracy up to a fifth significant digit. It is also found that the

(a)

(b)

Fig. 6. Comparison of theS21 of a symmetricgap (�r = 9:9, d = 0:635

mm, W1 = W2 = 0:635 mm, G = 0:508 mm). (a) Magnitude ofS21.
(b) Phase ofS21.

assumed analytical representation of the current distribution
along the transverse direction does not affect the results, if the
value of is calculated accurately.

The end location of each th and th triangular
weighting function does not affect the accuracy of the results
if the expansion functions cover at least a quarter-wavelength
from the gap discontinuity. This indicates that the higher order
modes generated at the vicinity of discontinuities have highly
evanescent behavior. Thus, the center of each th and

th triangular testing function straddles the starting point
of the cosine currents (see Fig. 2).

For comparison of the overall computational efficiency, the
average computation times between the two methods, used
to obtain the predicted results of Fig. 4 were calculated. To
obtain the results of Fig. 4, the overall computation time
of the proposed method is 17 times faster than that of the
conventional method in [4].

Next, the scattering parameters in symmetric and asymmet-
ric gaps were examined. Because there is a lack of data for
asymmetric gaps, a symmetric gap was chosen for the initial
comparison to validate the formulation and the computed
results. Once the solution is validated for a symmetric gap,
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(a)

(b)

Fig. 7. S parameters of an asymmetricgap (�r = 6:15, d = 1:27 mm,
W1 = 0:5 mm,W2 = 0:75 mm, andG = 0:5 mm). (a) Magnitudes ofS11,
S21, andS22. (b) Phases ofS11, S21, andS22.

one may assume that the formulation for asymmetric gaps is
also correct.

The symmetric gap on a grounded dielectric slab investi-
gated has a width mm and gap

mm with a relative permittivity and a substrate
thickness mm. The magnitude and phase of and

, computed by using the proposed method, are compared
with those of the full-wave solution [2] and are plotted in
Figs. 5 and 6. Clearly, satisfactory agreement with the results
of [2] has been achieved. Since the proposed results are quite
similar to the full-wave data, which take into account both

and current components, it is believed that for the gap
discontinuities, the assumption of using only the longitudinal
current component on the narrow microstrip line is reasonable.
This is due to the fact that there is no mechanism to excite
strong transverse currents for gap discontinuities. Therefore,
we assume that this is valid even for asymmetric gaps if their
respective strip widths remain electrically narrow. However,
step–junction discontinuities (because of their current flow in
the vicinity of the junctions) require the transverse current
component in order to achieve sufficiently accurate results [2].

Next, the scattering parameters of an asymmetric gap for
, mm, mm, mm,

and mm were examined. In this case, the values
of are not equal to those of due to the physical
asymmetry with respect to the width of the two strips. The
corresponding values of , , and are plotted in Fig. 7
as a function of frequency. No computed or measured results
for the asymmetric gap discontinuities could be found in the
literature for comparison. However, based on the successful
results of the symmetric gap, it can be safely assumed that the
obtained results are reasonable and valid.

V. CONCLUSIONS

An efficient full-wave analysis of symmetric and asymmet-
ric gaps is developed by using the analytical solutions for
the asymptotic matrix elements. A motivation for performing
such a procedure is to reduce the required computation time to
evaluate the impedance-matrix elements. Analytical techniques
have been successfully used to improve the computational
efficiency while retaining the accuracy for the evaluation of
the asymptotic matrix elements. This has been successfully
demonstrated in the analysis of symmetric and asymmetric
gaps.

APPENDIX A

In this appendix, we are concerned with the analytical
solution of the following type of integral in (21):

(34)

where is the zeroth-order Bessel function of the first kind,
and is the modified Bessel function of the first kind.

With the aid of [9, formula 13.4.5.(6), p. 333], (34) can be
expressed as a product of two hypergeometric series as

(35)

where

(36)

(37)

which is valid for any arbitrary positive values of, , and .
After careful examination of (36) and (37), it is easily found

that the values of and always have less than zero value,
i.e., , . Thus, the hypergeometric series in (35)
is divergent in the region , . However, these
series can be transformed into geometrically convergent series
(analytical region) by using the Gauss relation [10, formula
9.131, p. 1043] as

(38)
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Using (38), the regions , of the hypergeometric
series in (35) can be converted to analytical regions

, . Also, from the relations of [6, eqs. (28) and
(30)], the hypergeometric series function , can
be represented by an elliptical function as

if (39)

where is the complete elliptical function of the first kind.
With the aid of (39) and (38), and

can be represented by

(40)

(41)

These formulas make it possible to evaluate (35) by geomet-
rically convergent series. Substituting (40) and (41) into (35),
the closed-form solution of (34) can be obtained as follows:

(42)

In order to check the validity of (42), we first consider the
analytical solution of the integral (34) for . With the aid
of [10, formula 6.513.2], the integral of (34) for can

be written as

(43)

where is the spherical Legendre function of the first
kind.

Using [6, eq. (30)], (43) may be expressed as a product of
the following two elliptical functions:

(44)

It can be easily shown that (42) reduces to (44) by letting
. Thus, formula (44) can be regarded as a special case

of (42) if .

APPENDIX B

The integral in (26) over the plane can be converted
into an integration over the plane by using Parseval’s
theorem

(45)

Let us define and
. With the aid of [10, formula 3.742.8],

can be solved as

(46)

Using straightforward algebraic manipulations, can be
easily written as

(47)

where is defined in (11).
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if

if
(48)

if

if
(50)

Substituting (46) and (47) into (45), can be evaluated
exactly in closed-form in terms of sine and cosine terms as
shown in (48), at the top of this page. Using [10, formula
3.727.9]

(49)

the integral in (27) can be expressed as shown in (50),
at the top of this page, and in (32) and (33) is defined as

(51)

where and are given by
and ,

respectively.
Using [10, formula 3.721.1]

(52)

the infinite integral in (51) can be simplified to the finite
integral as

(53)
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